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Fractional Laplacian in an open set

Let D ⊂ Rd be an open set, and β ∈ (0, 2]. Consider β-stable process killed upon
exiting D. The corresponding Dirichlet form (in case β ∈ (0, 2)) is given by

E(u, u) =

∫
D

∫
D

(u(y)− u(x))2|x − y |−d−β dx dy +

∫
D

u(x)2κ(x) dx ,

where

κ(x) =

∫
Dc

|x − y |−d−β dy � δD(x)−β

(when D is C 1,1) is the killing potential.
The infinitesimal generator of the semigroup is β/2-fractional Laplacian with zero
exterior condition written as (−∆)β/2|D – the restricted fractional Laplacian (RFL).
The sharp two-sided heat kernel estimates in C 1,1-open set D were established by Chen,
Kim, Song (JEMS 2010) (for β ∈ (0, 2)):

pD(t, x , y) �
(

1 ∧ δD(x)

t1/β

)β/2(
1 ∧ δD(y)

t1/β

)β/2(
t−d/β ∧ t

|x − y |d+β

)
for small time t (|x − y |β ≤ t - near-diagonal), and (if D is bounded)

pD(t, x , y) � e−λ1tδD(x)β/2δD(y)β/2

for large time t (λ1 the first eigenvalue of (−∆)β/2|D).
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By integrating pD(t, x , y) over time, one gets the sharp two-sided Green function
estimates

GD(x , y) �
(

1 ∧ δD(x)

|x − y |

)β/2(
1 ∧ δD(y)

|x − y |

)β/2

|x − y |−d+β

(Chen, Song 1998; Kulczycky 1997).
The boundary Harnack principle holds for non-negative harmonic functions with the
exact decay rate δD(x)β/2 (Bogdan 1997).

One can regard the RFL as a Schrödinger perturbation of the regional Laplacian in D:

Lu(x) = p.v.

∫
D

(u(y)− u(x))|x − y |−d−β ,

namely, (−∆)β/2|Du(x) = Lu(x)− κ(x)u(x) with critical perturbation κ(x) � δD(x)−β .
It was shown by Chen, Kim, Song (PTRF 2010) that for β ∈ (1, 2) the censored process
corresponding to the regional Laplacian has the heat kernel estimates

qD(t, x , y) �
(

1 ∧ δD(x)

t1/β

)β−1(
1 ∧ δD(y)

t1/β

)β−1(
t−d/β ∧ t

|x − y |d+β

)
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For subcritical perturbation κ, for example κ(x) = cδD(x)−ρ with 0 ≤ ρ < β there is
stability of the heat kernel, cf. Chen, Kim, Song, (TAMS 2015).

In Cho, Kim, Song, V., Factorization and estimates of Dirichlet heat kernels for
non-local operators with critical killings (JMPA 2020), in case β ∈ (1, 2), we considered
critical perturbations of the regional Laplacian of the form κ(x) = C(β, p)δD(x)−β

where C(β, p) ∈ [0,∞) is a constant depending on the parameter p ∈ [β − 1, β),
limp↓β−1 C(β, p) = 0, limp↑β C(β, p) =∞.
The sharp two-sided heat kernel estimates are

q(t, x , y) �
(

1 ∧ δD(x)

t1/β

)p (
1 ∧ δD(y)

t1/β

)p (
t−d/β ∧ t

|x − y |d+β

)
.

Note that p = β − 1 corresponds to the regional fractional Laplacian, while p = β/2
corresponds to the restricted fractional Laplacian.
Also note that the boundary decay rate p ∈ [β − 1, β) depends on the constant C(β, p).
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Fractional power of the RFL

For γ ∈ (0, 1) consider the fractional power ((−∆)β/2|D)γ . When β = 2, this is the
usual spectral fractional Laplacian (SFL). Probabilistically, one subordinates the killed
β-stable process by means of an independent γ-stable subordinator.
Some aspects of this operator (in case of an open C 1,1 set), in particular which
properties depend on β and which on γ, were studied by Kim, Song, V in TAMS (2019,
β = 2) and Pot. Anal. (2020, β ∈ (0, 2)).
Let α := βγ ∈ (0, 2). The sharp two-sided Green function estimates are

G(x , y) �
(

1 ∧ δD(x)

|x − y |

)β/2(
1 ∧ δD(y)

|x − y |

)β/2

|x − y |−d+α

=

(
1 ∧ δD(x) ∧ δD(y)

|x − y |

)β/2(
1 ∧ δD(x) ∨ δD(y)

|x − y |

)β/2

|x − y |−d+α

The Dirichlet form is given by

E(u, u) =

∫
D

∫
D

(u(y)− u(x))2J(x , y) dy dx +

∫
D

u(x)2κ(x) dx

with κ(x) � δD(x)−α.
The most interesting ingredient is the (jump) kernel J(x , y) which has a rather unusual
two-sided estimates:
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In case β = 2

J(x , y) �
(
δD(x)

|x − y | ∧ 1

)(
δD(y)

|x − y | ∧ 1

)
|x − y |−d−α

(does not depend on γ).
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In case β = 2

J(x , y) �
(
δD(x) ∧ δD(y)

|x − y | ∧ 1

)(
δD(x) ∨ δD(y)

|x − y | ∧ 1

)
|x − y |−d−α

(does not depend on γ).
Somewhat surprisingly, in case β ∈ (0, 2)

J(x , y) �



(
δD (x)∧δD (y)
|x−y| ∧ 1

)β(1−γ)

|x − y |−d−α, γ ∈ (1/2, 1),(
δD (x)∧δD (y)
|x−y| ∧ 1

)β/2

log

(
1 +

(
(δD (x)∨δD (y))∧|x−y|
(δD (x)∧δD (y))∧|x−y|

)β)
|x − y |−d−α, γ = 1/2,(

δD (x)∧δD (y)
|x−y| ∧ 1

)β/2 (
δD (x)∨δD (y)
|x−y| ∧ 1

)(β/2)(1−2γ)

|x − y |−d−α, γ ∈ (0, 1/2).

If we write J(x , y) = B(x , y)|x − y |−d−α, then the red part above is comparable to
B(x , y). We call B(x , y) the boundary part of J(x , y).

Another very surprising fact is that in case β ∈ (0, 2) the BHP holds when γ ∈ (1/2, 1),
while it fails for γ ∈ (0, 1/2] (although Carleson’s estimate holds true). In case β = 2,
BHP holds for all γ ∈ (0, 1). When true, the decay rate of harmonic functions is
δD(x)β/2 (independent of γ).
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The heat kernel of the fractional power of the RFL

The semigroup of ((−∆)β/2|D)γ has a density (the heat kernel) given by

q(t, x , y) =

∫ ∞
0

pD(s, x , y)P(St ∈ ds)

where pD(s, x , y) is the heat kernel of the RFL, and S = (St)t≥0 is the γ-stable
subordinator.
Recall that

J(x , y) = lim
t↓0

q(t, x , y)

t
,

which in view of the estimates of J(x , y) suggests that the estimates of the heat kernel
q(t, x , y) are quite complicated.
This is indeed the case. The sharp two-sided estimates (for bounded C 1,1-open set D)
are established in Cho, Kim, Song, V: Heat kernel estimates for subordinate Markov
processes and their applications (2021). The estimates being quite complicated, I will
not present them in this talk.
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The Dirichlet form degenerate at the boundary

The state space is the upper half-space Rd
+ = {x = (x̃ , xd) : xd > 0}. Let α ∈ (0, 2).

The jump kernel:
J(x , y) = |x − y |−d−αB(x , y) on Rd

+ × Rd
+

In case 0 < c ≤ B(x , y) ≤ C , this is well studied and can be viewed as a uniform elliptic
condition for non-local operator (fractional Laplacian). One introduces the pure-jump
Dirichlet form

E(u, u) =
1

2

∫
Rd

+

∫
Rd

+

(u(x)− u(y))2J(x , y) dy dx +

∫
Rd

+

u(x)2κ(x) dx

and shows that there is a corresponding Hunt process Y which is Feller and strongly
Feller.

Motivated by the jump kernel of ((−∆)β/2|Rd
+

)γ , we try to develop the theory where

B(x , y) depends on xd = δRd
+

(x), yd = δRd
+

(y), as well as |x − y |, and decays at the

boundary.
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The jump kernel

Kim, Song, V: On potential theory of Markov processes with jump kernels decaying at
the boundary (2020)
Kim, Song, V: Sharp two-sided Green function estimates for Dirichlet forms degenerate
at the boundary (2021)

Assumptions on the boundary function B(x , y):

(A1) B(x , y) = B(y , x) for all x , y ∈ Rd
+.

(A2) If α ≥ 1, then there exist θ > α− 1 and C > 0 such that

|B(x , x)− B(x , y)| ≤ C

(
|x − y |
xd ∧ yd

)θ
.

(A4) Scaling: For all x , y ∈ Rd
+ and a > 0, B(ax , ay) = B(x , y).

Horizontal translation invariance: In case d ≥ 2, for all x , y ∈ Rd
+ and z̃ ∈ Rd−1,

B(x + (z̃ , 0), y + (z̃ , 0)) = B(x , y).
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The jump kernel, cont.

(A3) There exist C ≥ 1 and parameters β1, β2, β3, β4 ≥ 0, with β1 > 0 if β3 > 0, and
β2 > 0 if β4 > 0, such that

C−1B̃(x , y) ≤ B(x , y) ≤ CB̃(x , y) , x , y ∈ Rd
+ ,

where
B̃(x , y) :=

(xd ∧ yd
|x − y | ∧ 1

)β1
(xd ∨ yd
|x − y | ∧ 1

)β2

×
[

log
(

1 +
(xd ∨ yd) ∧ |x − y |
xd ∧ yd ∧ |x − y |

)]β3

×
[

log
(

1 +
|x − y |

(xd ∨ yd) ∧ |x − y |

)]β4

.

J(x , y) �



(
xd∧yd
|x−y| ∧ 1

)β(1−γ)

|x − y |−d−α, γ ∈ (1/2, 1),(
xd∧yd
|x−y| ∧ 1

)β/2

log

(
1 +

(
(xd∨yd )∧|x−y|
(xd∧yd )∧|x−y|

)β)
|x − y |−d−α, γ = 1/2,(

xd∧yd
|x−y| ∧ 1

)β/2 (
xd∨yd
|x−y| ∧ 1

)(β/2)(1−2γ)

|x − y |−d−α, γ ∈ (0, 1/2).
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The killing potential

To every parameter p ∈ ((α− 1)+, α+ β1), we associate a constant C(α, p,B) ∈ (0,∞)
depending on α, p and B defined as

C(α, p,B) =

∫
Rd−1

1

(|ũ|2 + 1)(d+α)/2

∫ 1

0

(sp − 1)(1− sα−p−1)

(1− s)1+α
B
(
(1− s)ũ, 1), sed

)
ds dũ , (1)

where ed = (0̃, 1).
The function p 7→ C(α, p,B) is strictly increasing, continuous, and

lim
p↓(α−1)+

C(α, p,B) = 0, lim
p↑α+β1

C(α, p,B) =∞.

The killing potential is defined by

κ(x) = C(α, p,B)x−αd , x ∈ Rd
+.
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Dirichlet form

Let

ER
d
+ (u, v) :=

1

2

∫
Rd

+

∫
Rd

+

(u(x)− u(y))(v(x)− v(y))J(x , y) dy dx ,

and let FRd
+ be the closure of C∞c (Rd

+) under ER
d
+

1 := ER
d
+ + (·, ·)L2(Rd

+,dx).

Then (ER
d
+ ,FRd

+ ) is a regular Dirichlet form on L2(Rd
+, dx).

Set

E(u, v) := ER
d
+ (u, v) +

∫
Rd

+

u(x)v(x)κ(x) dx ,

and F = F̃Rd
+ ∩ L2(Rd

+, κ(x)dx).
Then (E ,F) is a regular Dirichlet form on L2(Rd

+, dx).
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The operator

For u : Rd
+ → R and x ∈ Rd

+, we set

LBαu(x) := p.v.

∫
Rd

+

(u(y)− u(x))J(x , y) dy = p.v.

∫
Rd

+

u(y)− u(x)

|x − y |d+α
B(x , y),

whenever the principal value integral makes sense. Further, let

LBu(x) := LBαu(x)− κ(x)u(x) = LBαu(x)− C(α, p,B)x−αd u(x), x ∈ Rd
+.

Then (at least formally), E(u, v) = (−LBu, v)L2(Rd
+), i.e., LB is the generator of the

corresponding semigroup (and the process).

Explanation of C(α, p,B): If gp(y) := yp
d , then

LBαgp(x) = C(α, p,B)xp−α
d .
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The process

Let ((Yt)t≥0, (Px)x∈Rd
+\N

) be the associated Hunt process with lifetime ζ. It can be

proved that the exceptional set N can be taken as the empty set. We add a cemetery
point ∂ to the state space Rd

+ and define Yt = ∂ for t ≥ ζ.

A special case: B(x , y) = 1 – no boundary term, and p = α/2. Then Y is the isotropic
α-stable case killed upon exiting Rd

+. Recall the Green function estimates: on Rd
+ ×Rd

+,

G(x , y) � 1

|x − y |d−α

(
xd
|x − y | ∧ 1

)p (
yd
|x − y | ∧ 1

)p

No boundary term, no killing – not part of the setting: When α ∈ (1, 2) the
corresponding process is the censored α-stable process. The Green function estimates as
above with p = α− 1.
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Green function

Let Y be the Hunt process with lifetime ζ corresponding to the Dirichlet form (E ,F).
For a measurable function f : Rd

+ → [0,∞) define the Green potential by

Gf (x) := Ex

∫ ζ

0

f (Yt) dt =

∫ ∞
0

Pt f (x) dt, x ∈ Rd
+.

Under the assumption (A1) and (A2) one can show that there exists a symmetric
function G(x , y) (excessive in both variables) such that

Gf (x) =

∫
Rd

+

G(x , y)f (y) dy .

The function G(x , y) is called the Green function.

As a consequence of scaling (A4) we have that

G(x , y) = G

(
x

|x − y | ,
y

|x − y |

)
|x − y |α−d , x , y ∈ Rd

+.
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Green function estimates

Theorem A: Assume (A1) – (A4) hold, κ(x) = C(α, p,B)x−αd , p ∈ ((α− 1)+, α + β1)
and d > 2 ∧ (α + β1 + β2).
Then the process Y admits a Green function G : Rd

+ × Rd
+ → [0,∞] such that G(x , ·) is

continuous in Rd
+ \ {x} and regular harmonic with respect to Y in Rd

+ \ B(x , ε) for any
ε > 0.
Moreover, G(x , y) has the following estimates:
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(1) If p ∈ ((α− 1)+, α+ 1
2

[β1 + (β1 ∧ β2)]), then on Rd
+ × Rd

+,

G(x , y) �
1

|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p

=

(
xd ∧ yd

|x − y |
∧ 1

)p( xd ∨ yd

|x − y |
∧ 1

)p 1

|x − y |d−α
.

(2) If p = α+ β1+β2
2

, then on Rd
+ × Rd

+,

G(x , y) �
1

|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p (
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

))β4+1

.

(3) If p ∈ (α+ β1+β2
2

, α+ β1), then on Rd
+ × Rd

+,

G(x , y) �
1

|x − y |d−α

(
xd ∧ yd

|x − y |
∧ 1

)p ( xd ∨ yd

|x − y |
∧ 1

)2α−p+β1+β2

log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

)β4

=
1

|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p ( xd ∨ yd

|x − y |
∧ 1

)−2(p−α−(β1+β2)/2)

×
(

log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

))β4

.

Zoran Vondraček (University of Zagreb) On boundary decay 16th Workshop 13/07/2021 18 / 21



Boundary Harnack principle

For any a, b > 0 and w̃ ∈ Rd−1, define a box

Dw̃ (a, b) := {x = (x̃ , xd) ∈ Rd : |x̃ − w̃ | < a, 0 < xd < b}.

Theorem B: Assume p ∈ ((α− 1)+, α + (β1 ∧ β2)). Then there exists C ≥ 1 such that
for all r > 0, w̃ ∈ Rd−1, and any non-negative function f in Rd

+ which is harmonic in
Dw̃ (2r , 2r) with respect to Y and vanishes continuously on B((w̃ , 0), 2r) ∩ ∂Rd

+, we
have f (x)

xp
d

≤ C
f (y)

yp
d

, x , y ∈ Dw̃ (r/2, r/2). (2)

A consequence is that if two functions f , g in Rd
+ both satisfy the assumptions in

Theorem B, then f (x)

f (y)
≤ C 2 g(x)

g(y)
, x , y ∈ Dw̃ (r/2, r/2).
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Failure of the BHP

Theorem C: Assume α + β2 ≤ p < α + β1. Then the non-scale-invariant boundary
Harnack principle is not valid for Y .

The non-scale-invariant boundary Harnack principle holds near the boundary of Rd
+ if

there is a constant R̂ ∈ (0, 1) such that for any r ∈ (0, R̂ ], there exists a constant
c = c(r) ≥ 1 such that for all w̃ ∈ Rd−1 and non-negative functions f , g in Rd

+ which
are harmonic in Rd

+ ∩ B((w̃ , 0), r) with respect to Y and vanish continuously on
∂Rd

+ ∩ B((w̃ , 0), r), we have

f (x)

f (y)
≤ c

g(x)

g(y)
for all x , y ∈ B((w̃ , 0), r/2) ∩ Rd

+.
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Thank you.
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